

RTFB Noise Model and Simulator

N. Sereno

Collaboration: J. Carwardine, S. Xu, H. Shang, G. Decker, H. Bui

Argonne National Laboratory

May 9, 2012

Noise Model

- Uses 1, 6 or 12 second FPGA bpm data to generate simulated beam motion:
 - Computes corrector drive settings using a user specified machine inverse response matrix
 - Takes computed corrector drives and a forward response matrix to compute beam position at every bpm in the machine for use in the feedback simulation
- Uses existing real-time feedback (RTFB) system software configuration tools
 - Create inverse response matrix to compute corrector drives
 - Can add arbitrary amounts of additional bpm noise
 - Can use a subset of full time-domain bpm data sets for faster processing
 - Can filter out bad bpms based on large offset or data set STD
- FPGA (BSP-100) bpm system upgrade due to be completed this year

Noise Model GUI

Simulator

- Uses output time-domain beam position from the noise model
- Uses existing real-time feedback (RTFB) system software configuration tools
 - Create inverse response matrix to compute corrector drives
 - Can load real machine orbit correction bpm/corrector configurations
 - Provides plotting FFT ratio (with, without feedback), FFT, reverse integrated PSD and PSD
- Uses matlab to apply corrector model + PI regulator (Corrector model derived from frequency domain measurements) to get new corrector drive settings
- Updated bpm positions are derived by multiplying a forward response matrix by the matlab computed corrector drives
- Add additional capabilities:
 - Simulate correctors of various flavors (slow and fast)
 - Simulate various flavors of bpms (Bergoz, monopulse, Libera)
 - Add weighting of various families of correctors/bpms

Simulator GUI

